Quotients of hypersurfaces in weighted projective space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients of Hypersurfaces in Weighted Projective Space

In [1] some quotients of one-parameter families of Calabi-Yau varieties are related to the family of Mirror Quintics by using a construction due to Shioda. In this paper, we generalize this construction to a wider class of varieties. More specifically, let A be an invertible matrix with non-negative integer entries. We introduce varieties XA and MA in weighted projective space and in P, respect...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Fano Hypersurfaces in Weighted Projective 4-Spaces

A Fano variety is a projective variety whose anticanonical class is ample. A 2–dimensional Fano variety is called a Del Pezzo surface. In higher dimensions, attention originally centered on smooth Fano 3–folds, but singular Fano varieties are also of considerable interest in connection with the minimal model program. The existence of Kähler–Einstein metrics on Fano varieties has also been explo...

متن کامل

pseudo ricci symmetric real hypersurfaces of a complex projective space

pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

The Number of Rational Quartics on Calabi-yau Hypersurfaces in Weighted Projective Space P(2, 1)

We compute the number of rational quartics on a general Calabi-Yau hypersurface in weighted projective space P(2, 1). The result agrees with the prediction made by mirror symmetry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: advg

سال: 2011

ISSN: 1615-7168,1615-715X

DOI: 10.1515/advgeom.2011.029